--- tags: hpc, inl, development, algorithms date: 2017-07-18 --- # Programming Religious Wars At the end of my 2017 summer internship at Idaho National Laboratory, I performed an experiment to determine the fastest programming language. I had the opportunity to then present my findings at a poster conference. ```{image} /_static/images/inl-poster-7-18-17.png ``` ## Code Snippets Here are some small code snippets used in my testing: ### Vanilla Python ``` from decimal import * precision = 20 getcontext().prec = precision #n = input("Calculate pi to what accuracy?") n = 100000 #def f(x): # return (Decimal('1')-(Decimal(x)**Decimal('2')))**Decimal('0.5') val = 0 for i in range(n): i = i+1 val = val+(Decimal('1')-(Decimal(float(i)/float(n))**Decimal('2')))**Decimal('0.5') val = val*2 pi = (Decimal('2')/n)*(Decimal('1')+val) print pi ``` ### C ``` #include #include int main() { int count, n = 1000000; double pi; float val = 0.0, p = 0.5; for(count = 1; count < n; ++count) { val += (pow((1.0-(((float)count/(float)n)*((float)count/(float)n))), p)); } pi = (val + 1.0) * (2.0/(float)n); pi = pi*2; printf("%.11f", pi); } ``` ### Perl ``` #!/usr/bin/perl $n = '1000000'; $n = $n + 0; $h = $n * 0; for($a = 1; $a < $n; $a = ++$a){ $t = $a/$n; $val = (1-(($t)**2))**0.5; $h+=$val; } $h = $h*2; $pi = (2/$n)*(1+$h); printf "%.11f", $pi; ``` ### Parallel Python ``` from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() name = MPI.Get_processor_name() def f(x): return (1-(float(x)**2))**float(0.5) n = 100000000000 nm = dict() pi = dict() for i in range(1,size+1): if i == size: nm[i] = (i*n/size)+1 else: nm[i] = i*n/size if rank == 0: val = 0 for i in range(0,nm[1]): val = val+f(float(i)/float(n)) val = val*2 pi[0] = (float(2)/n)*(float(1)+val) print name, "rank", rank, "calculated", pi[0] for i in range(1, size): pi[i] = comm.recv(source=i, tag=i) number = sum(pi.itervalues()) number = "%.20f" %(number) import time time.sleep(0.3) print "Pi is approximately", number for proc in range(1, size): if proc == rank: val = 0 for i in range(nm[proc]+1,nm[proc+1]): val = val+f(float(i)/float(n)) val = val*2 pi[proc] = (float(2)/n)*(float(1)+val) comm.send(pi[proc], dest=0, tag = proc) print name, "rank", rank, "calculated", pi[proc] ``` ### Python Metrics Gathering ``` import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import os import time tp1 = time.time() os.system('cd ~/Desktop/Scripts/Practice; ./cpi.pl > piperl.txt') tp = time.time()-tp1 in_file = open('piperl.txt', 'rt') perlpi = in_file.read() in_file.close() perlpi = float(perlpi) realpi = 3.14159265358979323846264338 tpy1 = time.time() os.system('cd ~/Desktop/Scripts/Practice; ./cpi.py > pipy.txt') tpy = time.time()-tpy1 in_file = open('pipy.txt', 'rt') pythonpi = in_file.read() in_file.close() pythonpi = float(pythonpi) os.system('cd ~/Desktop/Scripts/Practice; gcc cpi.c') tc1 = time.time() os.system('cd ~/Desktop/Scripts/Practice; ./a.out > piinc.txt') tc = time.time()-tc1 in_file = open('piinc.txt', 'rt') cpi = in_file.read() in_file.close() cpi = float(cpi) objects = ('Perl', 'Python', 'C') y_pos = np.arange(len(objects)) performance = [1/tp,1/tpy,1/tc] precision = [abs(realpi - perlpi),abs(realpi - pythonpi),abs(realpi - cpi)] plt.figure(1) plt.subplot(3,1,1) plt.bar(y_pos, performance, align='center', alpha=0.5) plt.xticks(y_pos, objects) plt.ylabel('''Speed (runs per second)''') plt.title('CPI Speed and Precision') plt.subplot(3,1,2) plt.bar(y_pos, precision, align='center', alpha=0.5) perlobject = '''Perl %s''' % perlpi pyobject = '''Python %s''' % pythonpi cobject = '''C %s''' % cpi piobjects = [perlobject, pyobject, cobject] plt.xticks(y_pos, piobjects) plt.ylabel('''Error (distance from pi)''') speed = [tp,tpy,tc] plt.subplot(3,1,3) speed = [tp,tpy,tc] overall = [1/(tp*abs(realpi - perlpi)), 1/(tpy*abs(realpi - pythonpi)), 1/(tc*abs(realpi - cpi))] plt.bar(y_pos, overall, align='center', alpha=0.5) plt.xticks(y_pos, objects) plt.ylabel('''Overall performance (speed x precision)''') plt.gcf().subplots_adjust(left=0.18) plt.gcf().subplots_adjust(bottom=0.15) plt.savefig('cpistats.pdf',pad_inches=5) os.system('cd ~/Desktop/Scripts/Practice; rm piperl.txt pipy.txt piinc.txt') os.system('open cpistats.pdf') ```